Types of Chemical Reactions Lab Experiment

The purpose of this lab¹ is to become more familiar with each of the 5 basic categories of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. This lab addresses the Next Generation Science Standard: *HS-PS1-2: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.*

Background

- $\begin{array}{ll} \text{1. Synthesis/Combination reactions} \\ \text{Two or more reactants combine to make 1 new product.} \\ \text{Examples: } C(s) + O_2(g) \rightarrow CO_2(g) \\ \text{H}_2O(l) + SO_3(g) \rightarrow \text{H}_2SO_4(aq) \end{array}$
- 2. Decomposition reactions A single reactant breaks down to form 2 or more products. Examples: $H_2CO_3(aq) \rightarrow H_2O(I) + CO_2(g)$ $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- Single-replacement reactions
 A single element replaces a similar element of an adjacent reactant compound.
 Examples: Zn(s) + CuSO₄(aq) → ZnSO₄(aq) + Cu(s)

4. Double-replacement reactions

Two ionic compounds exchange ions, producing 2 new ionic compounds. Examples: NaCl(aq) + AgNO₃(aq) \rightarrow NaNO₃(aq) + AgCl(s) HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(l)

5. Combustion reactions

A single element or compound combines with oxygen gas releasing energy. This rapid oxidation is called burning. Examples: $C(s) + O_2(g) \rightarrow CO_2(g) + energy$ $2Mg(s) + O_2(g) \rightarrow 2MgO(s) + energy$

 $2C_4H_{10}(g) + 13O_2 \rightarrow 8CO2(g) + 10H_2O(g) + energy$

Materials

Glassware: 250 mL beaker, 250 mL Erlenmeyer flask, 600 mL flask, 4 test tubes, evaporating dish **Miscellaneous equipment:** Test Tube Rack, Wooden splint, matches, laboratory thermometer, steel wool, zinc-coated nail, rubber band

Chemicals: Distilled Vinegar (HC₂H₃O₂), 3% Hydrogen Peroxide (H₂O₂), 95% Ethanol (EtOH), Baking Soda (NaHCO₃), 0.5 M CuSO₄, Active Yeast

Procedure

Synthesis

- 1. Measure room temperature and record: _____°C.
- 2. Soak a steel wool pad in 30 mL of vinegar in a 250-mL beaker.
- 3. Remove pad and squeeze the excess vinegar back into the beaker. The vinegar strips away the coating on the steel filaments, which are 96 to 98% iron.

¹ This lab is adapted from one developed by Mike Isley. Accessed on 2/6/18: <u>https://www.carolina.com/teacher-resources/Interactive/classifying-chemical-reactions/tr10679.tr</u>

- 4. Wrap the pad around the thermometer bulb, secure it with a rubber band, and observe the temperature over 5 min.
- 5. Record the final temperature of the steel wool: _____°C. Was there a temperature change?
- 6. Describe any changes to the steel wool. ____
- 7. Write a balanced equation for this reaction. Include heat as a reactant or product.

Decomposition activity

- 1. Pour the yeast from the test tube into the 250 mL Erlenmeyer flask containing the 20 mL of hydrogen peroxide (H₂O₂). The yeast contains the enzyme catalase that decomposes hydrogen peroxide. What gas or gases could be produced?
- 2. Review the table below for confirming 3 common gases.
- 3. Insert a flaming splint into the flask held at a 45° angle. Is the test positive for hydrogen (see Fig. 1)?
- 4. Insert a glowing splint into the flask. Is the test positive for oxygen (see Fig. 1)?

Oxygen Gas	Insert a glowing splint into the container. If it bursts back into flame, the test is positive.
Hydrogen Gas	Insert a flaming splint into the container held at a 45° angle. If there is a small explosion or barking sound, the test is positive.
Carbon Dioxide Gas	Insert a flaming splint into the container. If the flame is extinguished, the test is positive.
Figure 4 Ober devid to sta for 0 common second	

Figure 1 Standard tests for 3 common gases.

5. Write a balanced equation for this decomposition reaction.

Single-replacement activity

- 1. Hold the test tube containing 0.5 M CuSO₄ solution at a 45° angle and insert the zinc-coated nail.
- Place the test tube in the test tube rack. What happens? A galvanized nail (coated with Zn), undergoes a reaction:
- 3. Describe what you see: _
- 4. Complete and balance the equation: $Zn(s) + CuSO_4(aq) \rightarrow (aq) + (s)$

Double-replacement activity

- 1. Pour the baking soda (sodium hydrogen carbonate, NaHCO₃) from the test tube into the 600 mL beaker containing 30 mL of vinegar (acetic acid, HC₂H₃O₂).
- 2. Describe what happens.
- 3. Complete and balance the equation for this reaction: NaHCO₃ + HC₂H₃O₂ \rightarrow _____(aq) + ____(aq)
- 4. One of the products, carbonic acid (H₂CO₃), immediately decomposes into water and a gas. Complete and balance this equation, and identify the gas with a flaming or glowing splint: H₂CO₃ → H₂O + ____(g)

Combustion activity

- 1. Pour the 1 mL of ethanol from the stoppered test tube into the evaporating dish.
- 2. With a flaming splint, carefully ignite the ethanol in the dish. (This reaction occurs in your car's engine if you use gasoline that contains ethanol.) Do not touch the dish until 5 min after the flame extinguishes.
- 3. Complete and balance the equation for this reaction: $C_2H_5OH(I) + O_2(g) \rightarrow ____(g) + ____(g) + energy$
- 4. The combustion reaction for a Bunsen burner uses methane (CH_4) or propane (C_3H_8) . Complete and balance these 2 reactions:

 $\begin{array}{c} CH_4(g) + O_2(g) \rightarrow ____(g) + ___(g) + energy \\ C_3H_8(g) + O_2(g) \rightarrow ___(g) + ___(g) + energy \end{array}$